[Toán 9] GTLN?

H

huynhbachkhoa23

Đặt $t=\dfrac{x}{4}$ với $\dfrac{-1}{4}\le t < 0$

$BT=t+\dfrac{1}{t}=f(t)$

$\dfrac{f(a)-f(b)}{a-b}=\dfrac{(a-b)-\dfrac{a-b}{ab}}{a-b}=1-\dfrac{1}{ab} < 0$

Hàm $f(t)$ nghịch biến.

Suy ta $f(t) \le f(-\dfrac{1}{4})=\dfrac{-17}{4}$

$\text{max}( \dfrac{x}{4}+\dfrac{4}{x})=\dfrac{-17}{4} \leftrightarrow x=-1$
 
D

demon311

Đặt $t=-x \; ; \; (0< t \le 1)$
Ta có:
$\dfrac{ 4}{x}+\dfrac{ x}{4}=-(\dfrac{ 4}{t}+\dfrac{ t}{4})=-(\dfrac{ 1}{4t}+\dfrac{ t}{4}+\dfrac{ 15}{4t}) \le - (\dfrac{ 1}{2}+\dfrac{ 15}{4})=-\dfrac{ 17}{4}$
 
Top Bottom