[Toán 9] Giải hệ phương trình

N

nttthn_97

$(x+\sqrt{x^2+2012})(y+\sqrt{y^2+2012}=2012$

[TEX]\Leftrightarrow[/TEX]$(x-\sqrt{x^2+2012})(x+\sqrt{x^2+2012})(y+\sqrt{y^2+2012})=2012(x-\sqrt{x^2+2012})$

[TEX]\Leftrightarrow[/TEX]$y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x$

Tương tự

$x+\sqrt{x^2+2012}=\sqrt{y^2+2012}-y$

[TEX]\Rightarrow[/TEX]$x+y=0$[TEX]\Rightarrow[/TEX]$x=-y$

Thay vào pt (2)

[TEX]\Rightarrow[/TEX]$y^2+z^2-4y-4z+8=0$

[TEX]\Leftrightarrow[/TEX]$(y-2)^2+(z-2)^2=0$

[TEX]\Rightarrow[/TEX]$y=z=2; x=-2$
 
N

noinhobinhyen

$x+\sqrt{x^2+2012}=\sqrt{y^2+2012}-y$

$<=> (x+y)+(\sqrt{x^2+2012}-\sqrt{y^2+2012})=0$

$<=> (x+y)+\dfrac{x^2-y^2}{\sqrt{x^2+2012}+\sqrt{y^2+2012}})=0$

$<=> (x+y)(\sqrt{x^2+2012}+\sqrt{y^2+2012}+x-y)=0$

Ta có $\sqrt{x^2+2012} > \sqrt[]{x^2} \geq -x ; \sqrt{y^2+2012} > \sqrt[]{y^2} \geq y => \sqrt{x^2+2012}+\sqrt{y^2+2012}+x-y > 0$


$=> x+y=0$
 
Top Bottom