[Toán 9] Đồng dư

O

oggyz2

Giải:
Ta có :
$A=2^{100}+2^{101}+...+2^{2007}$
$(=)$ $2A=2^{101}+2^{102}+...+2^{2008}$
$(=)$ $A=2^{2008}-2^{100}$
và $2^{100}\equiv (2^{20})^{5}\equiv 922^{5}\equiv 922^{2}.922^{3}\equiv 1123.1801\equiv 1474(mod 2007)$
$2^{2008}\equiv (2^{100})^{20}.2^{8}\equiv 1474^{20}.256\equiv (1474^{3})^{6}.1474^{2}.256\equiv 685^{6}.1102.256\equiv (685^{3})^{2}.1132\equiv 82^{2}.1132\equiv 1024(mod 2007)$
$=>A:2007 $ dư $1557$

P/S: Cách này trâu quá!
 
Last edited by a moderator:
Top Bottom