[Toán 9] difficult exercises BDT

F

fnsofphn

Last edited by a moderator:
M

minhtuyb

[tex]\frac{a^2}{3} + b^2 + c^2 > ab + bc + ac[/TEX]
[tex] \Leftrightarrow b^2 + c^2 + \frac{a^2}{4} - ab - ac - bc + \frac{a^2}{12} > 0 [/TEX]

[tex]\Leftrightarrow b^2 + c^2 + \frac{a^2}{4} - \frac{2ab}{2} - \frac{2ac}{2} + 2bc + \frac{a^2}{12} - 3bc > 0 [/tex]
[TEX]\Leftrightarrow( b + c - \frac{a}{2})^2 + (\frac{a^2}{12} - 3cb) > 0(1) [/TEX]

Mà [TEX]abc=1\Rightarrow bc=\frac{1}{a}:[/TEX]
[TEX]\Rightarrow \frac{a^2}{12} - 3cb=\frac{a^2}{12}-\frac{3}{a}=\frac{a^3-36}{12a}>0(2)[/TEX]
-Từ (1) và (2) ta có ĐPCM

P/s: 2/ Áp dụng BĐT [tex]x^2+y^2\geq 2xy[/tex], có:
[tex]\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\geq \frac{2ab}{2bc}=\frac{a}{c}[/tex]

[tex]\Rightarrow "=": a=b;b=c\Leftrightarrow a=b=c[/tex]
Vậy: [tex]a^2+b^2+c^2=3a^2\vdots 3[/tex] không phải số nguyên tố
 
Last edited by a moderator:
Top Bottom