[Toán 9] $\dfrac{a}{b+c} + \dfrac{b}{c+a} + \dfrac{c}{a+b} \geq \dfrac{3}{2}$

N

nguyenbahiep1

[laTEX]M = \frac{a}{b+c} + 1+ \frac{b}{a+c}+1 +\frac{c}{b+a}+1 - 3 \\ \\ M = \frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b} -3 \\ \\ M = (a+b+c)(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}) - 3 \\ \\ M = \frac{1}{2}((b+c)+(a+c)+(a+b))(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}) - 3 \\ \\ M \geq \frac{9}{2} - 3 = \frac{3}{2} \\ \\ a = b = c[/laTEX]
 
Top Bottom