M
minhtuyb


Hình như chưa ai đăng đề Ams và SP năm nay nên mình đăng nốt cho đủ bộ ^_^:
---
Giải phương trình :
$\sqrt{x^{2}+2x+2\sqrt{x^{2}+2x-1}}+2x^{2}+4x-4 =0$
Câu 2 (2đ)
a, Cho các số $a,b,c$ đôi một phân biệt và thỏa mãn $ a^2(b+c)=b^2(a+c)=2012$
Tính giá trị của biểu thức : $ M= c^2(a+b) $
b, Cho 5 số nguyên dương đôi một phân biệt sao cho mỗi số dương trong chúng không có ước số nguyên tố nào khác 2 và 3. CMR trong 5 số đó tồn tại 2 số mà tích của chúng là một số chính phương.
Câu 3 (2đ)
Cho nó số thực $ x_1 , x_2 ,...., x_n $ với $n\geq 3$. Ký hiệu max{$x_1,x_2,...,x_n$} là số lớn nhất trong các số $x_{1},x_{2},...,x_n$.
CMR:
Max{$x_{1},x_{2},...,x_n$}$\geq \dfrac{x_{1}+x_{2}+...+x_{n}}{n}+\dfrac{\left |x_{1}-x_{2} \right |+\left | x_{2}- x_{3} \right |+....+\left | x_{n-1}-x_{n} \right |+\left | x_{n}-x_{1} \right |}{2n}$
Câu 4 ( 1,5 đ)
Trong một lớp học có 36 bàn học cá nhân, được xếp thành 4 hàng và 9 cột (các hàng được đánh số từ 1 đến 4, các cột được đánh số từ 1 đến 9 ). Sĩ số học sinh của lớp là 35. Sau một học kỳ, cô giáo chủ nhiệm xếp lại chỗ ngồi cho các bạn học sinh trong lớp. Đối với mỗi học sinh của lớp, giả sử trước khi chuyển chỗ, bạn ngồi ở bàn thuộc hàng thứ $m$, cột thứ $n$ và sau khi chuyển chỗ, bạn ngồi ở bàn thuộc hàng $a_m$, cột thứ $a_n$, ta gắn cho bạn đó số nguyên $ (a_{m} + a_n ) - (m+n)$. Chứng minh tổng của 35 số nguyên gắn với 35 bạn học sinh không vượt quá 11.
Câu 5 (3đ):
Cho hình vuông ABCD nội tiếp đường tròn $\left ( O \right )$. Điểm M thuộc cung nhỏ CD của $\left ( O \right )$, M khác C và D. MA cắt DB, DC theo thứ tự tại X ,Z ; MB cắt CA, CD tại Y,T; CX cắt DY tại K.
a, CMR : $\widehat{MXT}=\widehat{TXC}$, $\widehat{MYZ}=\widehat{ZYD}$ và $\widehat{CKD}=135^\circ$.
b, CMR :$\frac{KX}{MX}+\frac{KY}{MY}+\frac{ZT}{CD} =1$.
C, Gọi I là giao điểm của MK và CD. CMR : XT, YZ, OI cùng đi qua tâm đường tròn ngoại tiếp tam giác KZT.
---
Môn thi: TOÁN
(Dùng cho thí sinh thi vào lớp chuyên Toán và chuyên Tin)
Thời gian làm bài : 150 phút
----------------------------------------------------------------------
Câu 1 (1,5đ )Giải phương trình :
$\sqrt{x^{2}+2x+2\sqrt{x^{2}+2x-1}}+2x^{2}+4x-4 =0$
Câu 2 (2đ)
a, Cho các số $a,b,c$ đôi một phân biệt và thỏa mãn $ a^2(b+c)=b^2(a+c)=2012$
Tính giá trị của biểu thức : $ M= c^2(a+b) $
b, Cho 5 số nguyên dương đôi một phân biệt sao cho mỗi số dương trong chúng không có ước số nguyên tố nào khác 2 và 3. CMR trong 5 số đó tồn tại 2 số mà tích của chúng là một số chính phương.
Câu 3 (2đ)
Cho nó số thực $ x_1 , x_2 ,...., x_n $ với $n\geq 3$. Ký hiệu max{$x_1,x_2,...,x_n$} là số lớn nhất trong các số $x_{1},x_{2},...,x_n$.
CMR:
Max{$x_{1},x_{2},...,x_n$}$\geq \dfrac{x_{1}+x_{2}+...+x_{n}}{n}+\dfrac{\left |x_{1}-x_{2} \right |+\left | x_{2}- x_{3} \right |+....+\left | x_{n-1}-x_{n} \right |+\left | x_{n}-x_{1} \right |}{2n}$
Câu 4 ( 1,5 đ)
Trong một lớp học có 36 bàn học cá nhân, được xếp thành 4 hàng và 9 cột (các hàng được đánh số từ 1 đến 4, các cột được đánh số từ 1 đến 9 ). Sĩ số học sinh của lớp là 35. Sau một học kỳ, cô giáo chủ nhiệm xếp lại chỗ ngồi cho các bạn học sinh trong lớp. Đối với mỗi học sinh của lớp, giả sử trước khi chuyển chỗ, bạn ngồi ở bàn thuộc hàng thứ $m$, cột thứ $n$ và sau khi chuyển chỗ, bạn ngồi ở bàn thuộc hàng $a_m$, cột thứ $a_n$, ta gắn cho bạn đó số nguyên $ (a_{m} + a_n ) - (m+n)$. Chứng minh tổng của 35 số nguyên gắn với 35 bạn học sinh không vượt quá 11.
Câu 5 (3đ):
Cho hình vuông ABCD nội tiếp đường tròn $\left ( O \right )$. Điểm M thuộc cung nhỏ CD của $\left ( O \right )$, M khác C và D. MA cắt DB, DC theo thứ tự tại X ,Z ; MB cắt CA, CD tại Y,T; CX cắt DY tại K.
a, CMR : $\widehat{MXT}=\widehat{TXC}$, $\widehat{MYZ}=\widehat{ZYD}$ và $\widehat{CKD}=135^\circ$.
b, CMR :$\frac{KX}{MX}+\frac{KY}{MY}+\frac{ZT}{CD} =1$.
C, Gọi I là giao điểm của MK và CD. CMR : XT, YZ, OI cùng đi qua tâm đường tròn ngoại tiếp tam giác KZT.
---------Hết---------
Nguồn: VMF