[Toán 9] Đại số

V

vanlocvn_119

Last edited by a moderator:
N

nguyenbahiep1

câu 2 nhé

[laTEX]B = \frac{3.\sqrt{x}.(\sqrt{x}+2)}{(\sqrt{x}+2)(\sqrt{x}-1)} - \frac{\sqrt{x}+1}{\sqrt{x}+2} - \frac{\sqrt{x}+2}{\sqrt{x}-1} \\ \\ dk: x \not = 1 , x \geq 0 \\ \\ B = \frac{3.\sqrt{x}}{\sqrt{x}-1} - \frac{\sqrt{x}+1}{\sqrt{x}+2} - \frac{\sqrt{x}+2}{\sqrt{x}-1} \\ \\ B = \frac{2.\sqrt{x}-2}{\sqrt{x}-1} - \frac{\sqrt{x}+1}{\sqrt{x}+2} \\ \\ B = 2 - \frac{\sqrt{x}+1}{\sqrt{x}+2} \\ \\ B = \frac{\sqrt{x}+3}{\sqrt{x}+2}[/laTEX]

tìm Max của B

[laTEX]B = 1 +\frac{1}{\sqrt{x}+2} \\ \\ \frac{1}{\sqrt{x}+2} \leq \frac{1}{0 + 2} \\ \\ \Rightarrow B \leq 1 +\frac{1}{2} = \frac{3}{2} \\ \\ x = 0 [/laTEX]
 
V

vansang02121998

$A=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}$

$\Leftrightarrow A\sqrt{2}=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{\sqrt{23-3\sqrt{5}}}$

$\Leftrightarrow A\sqrt{2}=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{\sqrt{23-3\sqrt{5}}}$

$\Leftrightarrow A\sqrt{2}=\dfrac{3\sqrt{5}-1}{\sqrt{23-3\sqrt{5}}}(A > 0)$

$\Leftrightarrow 2A^2=\dfrac{46-6\sqrt{5}}{23-3\sqrt{5}}=2$

$\Leftrightarrow A^2=1 \Leftrightarrow A=1$ ( vì $A>0$ )
 
V

vansang02121998

$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2$

$\Leftrightarrow (\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})^2=4$

$\Leftrightarrow \dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\frac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}=\dfrac{2}{xy}-\dfrac{1}{z^2}$

$\Leftrightarrow \dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{z^2}+\frac{2}{yz}+\dfrac{2}{xz}=0$

$\Leftrightarrow (\dfrac{1}{x}+\dfrac{1}{z})^2+(\dfrac{1}{y}+\dfrac{1}{z})^2=0$

$\Leftrightarrow \dfrac{1}{x}=\dfrac{1}{y}=\dfrac{-1}{z}$

Từ đây dễ dàng tính được $x=y=\dfrac{1}{2};z=\dfrac{-1}{2}$

Thay vào $P=(\dfrac{1}{2}+1-\dfrac{1}{2})^{2012}$

$P=1^{2012}=1$
 
V

vansang02121998

$xy+2x=27-3y$

$\Leftrightarrow xy+2x+3y+6=33$

$\Leftrightarrow (x+3)(y+2)=1.33=3.11=-1.(-33)=-3.(-11)$

vì $x;y$ dương $\Rightarrow x+3 >3;y+2 > 2$

$\Rightarrow x+3=11;y+2=3$

$\Leftrightarrow x=8;y=1$
 
Last edited by a moderator:
Top Bottom