[toán 9] cực trị

S

sagacious

Last edited by a moderator:
T

tienqm123

1, $\sqrt{ab+c} = \sqrt{ab+c(a+b+c)}= \sqrt{(a+c)(b+c)}$ . Tương tự ta có :
$VT = \sum \dfrac{a+b}{\sqrt{(b+c)(a+c)}} $
$ = \sum \dfrac{x}{\sqrt{yz}} (voi x+y+z=2)$
$ = \sum \dfrac{x^2}{\sqrt{xy}.\sqrt{xz}}$
$ \ge \dfrac{(x+y+z)^2}{\sqrt{xy}.\sqrt{xz}+\sqrt{xy} \sqrt{yz}+\sqrt{xz}.\sqrt{yz}}$
$ = \dfrac{4}{\sqrt{xy}\sqrt{xz}+\sqrt{xy}\sqrt{yz} + \sqrt{xz}.\sqrt{yz}} (1)$
$MS(1) \le \sqrt{(xy+yz+zx)^2} = xy+yz+zx \le \dfrac{4}{3}$
Do đó BDT được chứng minh
 
Last edited by a moderator:
T

tienqm123

2, $P=\sum \dfrac{a^4}{a\sqrt{b^2+3}}$
$\ge \dfrac{(a^2+b^2+c^2)^2}{a\sqrt{b^2+3}+b\sqrt{c^2+3}+c\sqrt{a^2+3}}$
$MS^2 \le (a^2+b^2+c^2)(a^2+b^2+c^2+9) = 36$
\Rightarrow $ MS \le 6 $
\Rightarrow $P \ge \dfrac{3^2}{6} = \dfrac{3}{2}$
 
Last edited by a moderator:
Top Bottom