[Toán 9] CMR $x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$

M

maruco369

Last edited by a moderator:
N

nguyenbahiep1

[laTEX]\frac{x^2-yz}{x(1-yz)} = \frac{y^2-xz}{y(1-xz)} = \frac{x^2-y^2 +z(x-y)}{x-y} = x+y+z \\ \\ mat-khac: \frac{yx^2-y^2z}{yx(1-yz)} = \frac{xy^2-x^2z}{xy(1-xz)} = \frac{yx^2 -y^2z -xy^2 +x^2z}{x^2yz-y^2xz} = \frac{(x-y)(yz+zx+yx)}{(x-y)(x.z.y} = \frac{1}{x}+\frac{1}{y}+\frac{1}{z}[/laTEX]
 
Top Bottom