[Toán 9] CMR : $\frac{a}{b+c+a}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\ frac{d}{a+c+d}<2$

N

nguyenbahiep1

Đề bài

cho a,b,c,d > 0

CMR:

[laTEX]1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+ \frac{d}{d+a+b} < 2[/laTEX]

Giải

[laTEX]\frac{a}{a+b+c} > \frac{a}{a+b+c+d}\\ \\ \frac{b}{b+c+d}> \frac{b}{a+b+c+d}\\ \frac{c}{c+d+a}> \frac{c}{a+b+c+d} \\ \\ \frac{d}{d+a+b}> \frac{d}{a+b+c+d} \\ \\ \Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+ \frac{d}{d+a+b} > \frac{a+b+c+d}{a+b+c+d} = 1 \\ \\ \\ \frac{a}{a+b+c} < \frac{a}{a+c}\\ \\ \frac{b}{b+c+d}< \frac{b}{b+d}\\ \frac{c}{c+d+a}< \frac{c}{a+c} \\ \\ \frac{d}{d+a+b}< \frac{d}{b+d} \\ \\ \Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+ \frac{d}{d+a+b} < \frac{a+c}{a+c}+\frac{b+d}{b+d} = 2[/laTEX]
 
Top Bottom