cho x=[tex]\sqrt{2+\sqrt{3}}-\sqrt{\frac{\sqrt[3]{6\sqrt{3}-10}}{\sqrt{3}+1}}[/tex]
tính giá trị của biểu thức A= ([tex](x^{4}+x^{3}-x^{2}-2x-1)^{2015}[/tex]
$x=\sqrt{2+\sqrt{3}}-\sqrt{\frac{\sqrt[3]{6\sqrt{3}-10}}{\sqrt{3}+1}}=\sqrt{(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2})^{2}}-\sqrt{\frac{\sqrt[3]{(\sqrt{3}-1)^{3}}}{\sqrt{3}+1}}= \frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}-\sqrt{\frac{\sqrt{3}-1}{\sqrt{3}+1}}=\frac{\sqrt{6}+\sqrt{2}}{2}-\frac{\sqrt{\sqrt{3}^{2}-1^{2}}}{\sqrt{3}+1}$
$x= \frac{\sqrt{6}+\sqrt{2}}{2}-\frac{\sqrt{2}(\sqrt{3}-1)}{\sqrt{3}^{2}-1^{2}}= \frac{\sqrt{6}+\sqrt{2}}{2}-\frac{\sqrt{6}-\sqrt{2}}{2}=\frac{\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}}{2}=\frac{2\sqrt{2}}{2}=\sqrt{2}$
Khi đó $:$ $A= (x^{4}+x^{3}-x^{2}-2x-1)^{2015}= (\sqrt{2}^{4}+\sqrt{2}^{3}-\sqrt{2}^{2}-2\sqrt{2}-1)^{2015}=(4+2\sqrt{2}-2-2\sqrt{2}-1)^{2015}=1^{2015}=1$