Đặt $a=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}$
$\Rightarrow a^2=2+\sqrt{2+\sqrt{2+\sqrt 2}}$
$\Rightarrow a^2-2=\sqrt{2+\sqrt{2+\sqrt 2}}$
$\Rightarrow$ bt $=\dfrac{2-a}{2-(a^2-2)}=\dfrac{2-a}{4-a^2}=\dfrac{1}{a+2}$
Mà $a>1\Rightarrow a+2>3\Rightarrow$ bt $=\dfrac1{a+2}<\dfrac13$ (đpcm)