[Toán 9] Chứng minh

T

transformers123

$P=(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}).\dfrac{(1+x)^2}{2}$

$\iff P=\dfrac{(\sqrt{x}-2)(\sqrt{x}+1)-(\sqrt{x}+2)(\sqrt{x}-1)}{(\sqrt{x}-1)
(\sqrt{x}+1)^2}.\dfrac{(1+x)^2}{2}$

$\iff P=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+1)^2}.\dfrac{(1+x)^2}{2}$

$\iff P=\dfrac{-\sqrt{x}(1+x)^2}{(\sqrt{x}-1)(\sqrt{x}+1)^2}$

Vì $0 < x < 1$ nên $\dfrac{-\sqrt{x}}{\sqrt{x}-1} > 0$

$\Longrightarrow \dfrac{-\sqrt{x}(1+x)^2}{(\sqrt{x}-1)(\sqrt{x}+1)^2} > 0$

$\iff P > 0$

$\Longrightarrow \mathfrak{Dpcm}$
 
Top Bottom