[Toán 9] Chứng minh

H

hoangtubongdem5

Last edited by a moderator:
L

letsmile519

$1+2$ \geq $2\sqrt{2}$
$2+3$\geq $2\sqrt{6}$

...

$\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{3+2}+...+\frac{\sqrt{36}-\sqrt{35}}{35+36}$\leq $\frac{\sqrt{2}-\sqrt{1}}{2.\sqrt{2}}+\frac{\sqrt{3}-\sqrt{2}}{2.\sqrt{6}}+...+\frac{\sqrt{36}-\sqrt{35}}{2.\sqrt{35}.\sqrt{36}}$

$\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{3+2}+...+\frac{\sqrt{36}-\sqrt{35}}{35+36}$\leq $\frac{1}{2}(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{35}}-\frac{1}{\sqrt{36}})$=$\frac{1}{2}(1-\frac{1}{6})=\frac{5}{12}$
 
Top Bottom