T
tuoigiathichchaynhay@gmail.com
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Cho $ a,b,c,d \geq 0 $ chứng minh rằng
$$ A = \frac{b(a+c)}{c(a+b)} + \frac{c(b+d)}{d(b+c)} + \frac{d(a+c)}{a(c+d)} + \frac{a(b+d)}{b(d+a)} \geq 4 $$
$$ A = \frac{b(a+c)}{c(a+b)} + \frac{c(b+d)}{d(b+c)} + \frac{d(a+c)}{a(c+d)} + \frac{a(b+d)}{b(d+a)} \geq 4 $$
Last edited by a moderator: