[Toán 9] Chia hết

T

trongphuongbn

Last edited by a moderator:
K

kool_boy_98

Giúp bạn nhé:

1.

$$5^{n+2} + 26.5^n + 8^{2n+1}$$

$$=5^n.(25+26)+8^{2n+1}$$

$$=(5^n.59+8.59^n) \vdots 59 (đpcm)$$

2.

$$n^{12} - n^8 - n^4 + 1$$

$$=n^8.(n^4-1)-(n^4-1)$$

$$=(n^4-1)(n^8-1)$$

$$=(n^4-1)^2(n^4+1)$$

$$=(n^2-1)^2(n^2+1)^2(n^4+1)$$

$$=16.k.(k+1)^2.(n^2+1)^2(n^4+1)$$

Với n lẻ thì ta có $(n^2+1)^2$ và $(n^4+1)$ là những số chẵn $\Longrightarrow (n^2+1)^2 \vdots 2$ và $(n^4+1) \vdots 2$

$\Longrightarrow (n^{12} - n^8 - n^4 + 1) \vdots (2^4.1.2^2.2^2.2^1)$ hay $(n^{12} - n^8 - n^4 + 1) \vdots 512 (đpcm)$.


____________________________________________________________________________________________________________________________
 
Top Bottom