[Toán 9] Căn thức

E

eye_smile

Với: $a+b+c=0$ thì $a^3+b^3+c^3=3abc$

Áp dụng ta có:

$(y−z)^3(1−x^3)+(z−x)^3(1−y^3)+(x−y)^3(1−z^3)=3(x−y)(y−z)(x−z)\sqrt[3]{(1−x^3)(1−y^3)(1−z^3)}$

Lại có:

$(y−z)^3(1−x^3)+(z−x)^3(1−y^3)+(x−y)^3(1−z^3)=(y−z)^3+(z−x)^3+(x−y)^3−[(xy−xz)^3+(yz−xy)^3+(xz−yz)^3]=3(x−y)(y−z)(x−z)−3xyz(x−y)(y−z)(x−z)=3(x−y)(y−z)(x−z)(1−xyz)$

\Rightarrow $3(x−y)(y−z)(x−z)(1−xyz)=3(x−y)(y−z)(x−z)\sqrt[3]{(1−x^3)(1−y^3)(1−z^3)}$

\Leftrightarrow $(1−x^3)(1−y^3)(1−z^3)=(1−xyz)^3$

\Rightarrow đpcm
 
Top Bottom