[Toán 9] Căn thức

T

transformers123

Ta có: $(a-b+c)^3=a^3-b^3+c^3+3(a-b)(c-b)(a+c)$

Áp dụng, ta có:

$A=(\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}})^3$

$\iff A=\dfrac{1}{9}-\dfrac{2}{9}+\dfrac{4}{9}+3(\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]
{\dfrac{2}{9}})(\sqrt[3]{\dfrac{4}{9}}-\sqrt[3]{\dfrac{2}{9}})(\sqrt[3]{\dfrac{1}
{9}}+\sqrt[3]{\dfrac{4}{9}})$

$\iff A=\dfrac{1}{3}+3.\dfrac{(1-\sqrt[3]{2})(\sqrt[3]{4}-\sqrt[3]{2})(1+\sqrt[3]{4})}
{\sqrt[3]{9}.\sqrt[3]{9}.\sqrt[3]{9}}$

$\iff A=\dfrac{1}{3}[1+(1-\sqrt[3]{2})(\sqrt[3]{4}-\sqrt[3]{2})(1+\sqrt[3]{4})]$

$\iff A=\dfrac{1}{3}(1+3\sqrt[3]{2}-4)$

$\iff A=\dfrac{1}{3}(3\sqrt[3]{2}-3)$

$\iff A=\sqrt[3]{2}-1\ (\mathfrak{Dpcm})$
 
Top Bottom