[Toán 9] Căn thức

V

vinhthanh1998

H

hthtb22

a. ĐKXĐ: x\geq 0 ; x khác 1

P=[tex](\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}).(\frac{1-x}{\sqrt{2}})^2[/tex]

P=
[tex](\frac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{(\sqrt{x}+1)^2}).(\frac{1-x}{\sqrt{2}})^2[/tex]

P=
[tex](\frac{(\sqrt{x}-2)(\sqrt{x}+1)-(\sqrt{x}+2)(\sqrt{x}-1)}{(x-1)(\sqrt{x}+1)}).(\frac{1-x}{\sqrt{2}})^2[/tex]

P=
[tex](\frac{-2\sqrt{x}}{(x-1)(\sqrt{x}+1)}).(\frac{1-x}{\sqrt{2}})^2[/tex]

P=[tex]\frac{2.\sqrt{x}(1-x)}{\sqrt{x}+1}[/tex]

P=[tex] 2. \sqrt{x}.(1-\sqrt{x})[/tex]



b. Với 0<x<1 thì 1-x >0
[tex]\sqrt{x}[/tex] >0
Nên P > 0

c. Áp dụng bđt Côsi ta có

[tex]4.\sqrt{x}(1-\sqrt{x}) \leq (\sqrt{x}+1-\sqrt{x})^2[/tex]

\Rightarrow P \leq [tex]\frac{1}{2}[/tex]

Dấu = xảy ra \Leftrightarrow [tex]x=\frac{1}{4}[/tex]
 
Last edited by a moderator:
Top Bottom