[Toán 9] Căn bậc hai

L

lp_qt

ĐK: $x;y >0$

$\dfrac{1}{\sqrt{x}} +\dfrac{1}{\sqrt{y}}=4-\sqrt{x} -\sqrt{y}$

$ \iff \dfrac{1}{\sqrt{x}} +\dfrac{1}{\sqrt{y}}+\sqrt{x} +\sqrt{y}=4$

$\dfrac{1}{\sqrt{x}}+\sqrt{x} \ge 2.\sqrt{\dfrac{1}{\sqrt{x}}.\sqrt{x}}=2$

Tương tự:

$\dfrac{1}{\sqrt{y}}+\sqrt{y} \ge 2$

$\Longrightarrow \dfrac{1}{\sqrt{x}} +\dfrac{1}{\sqrt{y}}+\sqrt{x} +\sqrt{y} \ge 4$

Dấu bằng xảy ra khi $x=y=1$
 
Top Bottom