[Toán 9] căn bậc hai!

T

thanhmai2000vn

Last edited by a moderator:
T

transformers123

a/ ta có:
$\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}$
$=\sqrt{\dfrac{4+2\sqrt{3}}{4-2\sqrt{3}}}+\sqrt{\dfrac{4-2\sqrt{3}}{4+2\sqrt{3}}}$
$=\sqrt{\dfrac{(1+\sqrt{3})^2}{(1-\sqrt{3})^2}}+\sqrt{\dfrac{(1-\sqrt{3})^2}{(1+\sqrt{3})^2}}$
$=\dfrac{1+\sqrt{3}}{\sqrt{3}-1}+\dfrac{\sqrt{3}-1}{\sqrt{3}+1}$
$=\dfrac{(\sqrt{3}+1)^2+(\sqrt{3}-1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)}$
$=\dfrac{1+2\sqrt{3}+3+1-2\sqrt{3}+3}{3-1}$
$=\dfrac{8}{2}$
$=4$
 
B

buivanbao123

b) $\frac{6}{\sqrt{7} +2}$ $\sqrt{\frac{2}{8+3\sqrt{7}}}$
\Leftrightarrow $\frac{6}{\sqrt{7} +2} .\dfrac{2}{3+\sqrt{7}}$
\Leftrightarrow $\dfrac{12}{13+5\sqrt{7}}$
 
T

toiyeu9a3

b.Đề thế này chứ nhỉ
$\dfrac{6}{\sqrt{7} + 2}$ + $\sqrt{\dfrac{2}{8 + 3\sqrt{7}}}$
= $\dfrac{6(\sqrt{7} - 2)}{7 -4}$+$\sqrt{\dfrac{2(8 - 3\sqrt{7})}{64 -63}}$
= $ 2\sqrt{7} - 4 $+ $3 -\sqrt{7}$
= $\sqrt{7} - 1$
 
Top Bottom