Toán 9 [ Biến đổi đơn giản biểu thức chứa căn bậc hai ]

N

ngoc_bb

Last edited by a moderator:
S

soccan

$(2\sqrt{10}-3\sqrt{40}+\sqrt{10})\sqrt{640}$

$=(3\sqrt{10}-3\sqrt{40})\sqrt{640}$

$=[3\sqrt{10}(1-2)]\sqrt{640}$

$=-3\sqrt{10}.\sqrt{640}$

$=-3\sqrt{10}.8\sqrt{10}$

$=-240$
 
S

soccan

$c) (2-\sqrt{3})^2+\sqrt{4-2\sqrt{3}}+\sqrt{12}$
$=(2-\sqrt{3})^2+\sqrt{3}-1+\sqrt{12}$
$=7-4\sqrt{3}+\sqrt{3}-1+\sqrt{12}$
$=6-3\sqrt{3}+\sqrt{12}$
$=6-3\sqrt{3}+2\sqrt{3}$
$=6-\sqrt{3}$
 
H

hoamattroi_3520725127

d) $(6.\sqrt{\dfrac{b}{36}} - 2\sqrt{b^2} + \sqrt{b^5}): (\sqrt{b} - \sqrt{b^3})$

$= (6.\dfrac{\sqrt{b}}{6} - 2\sqrt{b^2} + \sqrt{b^5}) : \sqrt{b}(1 - \sqrt{b^2})$

$= \dfrac{\sqrt{b} - 2\sqrt{b^2} + \sqrt{b^5}}{\sqrt{b}(1 - \sqrt{b^2})}$

$= \dfrac{\sqrt{b}(1 - 2\sqrt{b} + \sqrt{b^4})}{\sqrt{b}(1 - \sqrt{b^2})}$

$= \dfrac{(b - 2\sqrt{b} + 1) + b^2 - b}{(1 - \sqrt{b})(1 + \sqrt{b})} = \dfrac{(\sqrt{b} - 1)^2 + b(b - 1)}{(1 - \sqrt{b})(1 + \sqrt{b})} = \dfrac{-b(\sqrt{b} + 1) - \sqrt{b} + 1}{\sqrt{b} + 1}$
 
N

ngoc_2000

d) $(6.\sqrt{\dfrac{b}{36}} - 2\sqrt{b^2} + \sqrt{b^5}): (\sqrt{b} - \sqrt{b^3})$

$= (6.\dfrac{\sqrt{b}}{6} - 2\sqrt{b^2} + \sqrt{b^5}) : \sqrt{b}(1 - \sqrt{b^2})$

$= \dfrac{\sqrt{b} - 2\sqrt{b^2} + \sqrt{b^5}}{\sqrt{b}(1 - \sqrt{b^2})}$

$= \dfrac{\sqrt{b}(1 - 2\sqrt{b} + \sqrt{b^4})}{\sqrt{b}(1 - \sqrt{b^2})}$

$= \dfrac{(b - 2\sqrt{b} + 1) + b^2 - b}{(1 - \sqrt{b})(1 + \sqrt{b})}$ từ bước trên xuống bước này là sao tôi không hỉu giải thích cho nhé ! Thanks @};-
 
Top Bottom