[Toán 9] Biến đổi căn thức

N

noinhobinhyen

tổng quát

$\dfrac{1}{\sqrt[]{n}} = \dfrac{2}{2\sqrt[]{n}}$

+ $\dfrac{2}{2\sqrt[]{n}} < \dfrac{2}{\sqrt[]{n-1}+\sqrt[]{n}} = 2(\sqrt[]{n}-
\sqrt[]{n-1}$

$\Rightarrow A < 2(\sqrt[]{2}-\sqrt[]{1}+\sqrt[]{3}-\sqrt[]{2}+...+\sqrt[]{2025}-
\sqrt[]{2024}$

$\Leftrightarrow A < 2(\sqrt[]{2025}-1)=88$

+$\dfrac{2}{2\sqrt[]{n}} > \dfrac{2}{\sqrt[]{n+1}+\sqrt[]{n}} = 2(\sqrt[]{n+1}-
\sqrt[]{n}$

$\Rightarrow A > 2(\sqrt[]{3}-\sqrt[]{2}+\sqrt[]{4}-\sqrt[]{3}+...+\sqrt[]{2026}-
\sqrt[]{2025}$

$\Leftrightarrow A > 2(\sqrt[]{2026}-\sqrt[]{2}) > 87$

$\Rightarrow 87 < A < 88$

$\Rightarrow A \not\in N$
 
Top Bottom