[Toán 9] BĐT

M

mamcay

Last edited by a moderator:
K

khaitien

[TEX]\frac{2a}{b+c} + \frac{2b}{a+c} + \frac{2c}{b+a}[/TEX] = [TEX]\frac{4a^2}{2ab+2ac} + \frac{4b^2}{2bc+2ab} + \frac{4c^2}{2bc+2ac} \geq \frac{(2a+2b+2c)^2}{4ab+4bc+4ac}[/TEX] =[TEX]\frac{4(a^2+b^2+c^2) +8 (ab+bc+ca)}{4(ab+bc+ca)} = \frac{a^2+b^2+c^2}{ab+bc+ca} +2[/TEX] = 2 + [TEX]\frac{3(a^2+b^2+c^2)}{3ab+3bc+3ca}[/TEX]
[TEX]3ab+3bc+3ac \leq a^2+b^2+c^2+ 2ab+2bc+2ca[/TEX] = [TEX](a+b+c)^2[/TEX]
\Rightarrow[TEX] \frac{2a}{b+c} + \frac{2b}{a+c} + \frac{2c}{b+a} \geq 2 + \frac{3(a^2+b^2+c^2)}{(a+b+c)^2} [/TEX]= [TEX]3 + \frac{3(a^2+b^2+c^2)-(a+b+c)^2}{(a+b+c)^2}[/TEX] = 3 + [TEX]\frac{(a-b)^2+(b-c)^2+(c-a)^2}{(a+b+c)^2}[/TEX] (đpcm )
Dấu đẳng thức xảy ra \Leftrightarrow a=b=c
Cảm ơn và ấn chữ đúng rùm cái :p:p
 
Last edited by a moderator:
Top Bottom