[Toán 9] BĐT(chứa căn)

T

trungkien199

Last edited by a moderator:
L

letsmile519

Đặt $a-b=x$, $b-c=y$, $c-a=z$

\Rightarrow $x+y+z=0$

Ta có:

$\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}$

= $\sqrt{(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-\frac{2(x+y+z)}{zyx}}$

= $\sqrt{(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-\frac{2.0}{zyx}}$

= $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$


\Rightarrow đpcm
 
Last edited by a moderator:
T

thaolovely1412

đội 4

Bài 29
Ta có:[TEX] a(1-2bc)+1.(b+c) \le \sqrt{[a^2+(b+c)^2][(1-2bc)^2+1]}=\sqrt{2(1+2bc)(1+2b^2c^2-2bc)}[/TEX] (theo BĐT Cauchy-Schwarz)
Mặt khác:
[TEX]\sqrt{2(1+2bc)(1+2b^2c^2-2bc)} \le \sqrt{2} \Leftrightarrow \sqrt{2(1+2bc)(1+2b^2c^2-2bc)} \le VP=\sqrt{2} \Leftrightarrow 2b^2c^2(2bc-1) \le 0[/TEX] (luôn đúng)
Do đó: [TEX]a(1-2bc)+1.(b+c) \le \sqrt{2}[/TEX]
[TEX]\Leftrightarrow a+b+c\le 2abc+\sqrt{2}[/TEX]
Dấu "=" xảy ra khi [TEX]a=0;b=c=\frac{1}{\sqrt{2}}[/TEX]
 
Top Bottom