[Toán 9] BĐT cauchy

E

eye_smile

Ta có:
$\dfrac{1}{2x+y+z}=\dfrac{1}{4}.\dfrac{4}{2x+y+z}=\dfrac{1}{4}.\dfrac{4}{(x+y)+(x+z)} \le \dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z}) \le \dfrac{1}{16}.(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})$

TT có: $\dfrac{1}{x+2y+z} \le \dfrac{1}{16}.(\dfrac{1}{x}+2.\dfrac{1}{y}+\dfrac{1}{z})$

$\dfrac{1}{x+y+2z} \le \dfrac{1}{16}.(\dfrac{1}{x}+\dfrac{1}{y}+2.\dfrac{1}{z})$

Cộng theo vế, đc:
$ VT \le \dfrac{1}{16}.4.(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=1$

Dấu "=" xảy ra \Leftrightarrow $x=y=z=\dfrac{3}{4}$
 
Last edited by a moderator:
H

huynhbachkhoa23

Áp dụng $\dfrac{1}{a_1+a_2+...+a_n} \le \dfrac{1}{n^2}( \dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_n})$ ($a_i>0$)

Chứng minh: BDT tương đương $(a_1+a_2+...+a_n)(\dfrac{1}{a_1}+\dfrac{1}{2_1}+...+\dfrac{1}{a_1}) \ge n^2$ theo Cauchy luôn đúng

Áp dụng $VT = \sum \dfrac{1}{x+x+y+z} \le \sum \dfrac{1}{16}(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z})=\dfrac{1}{4}(\sum \dfrac{1}{x})=1$

Đẳng thức khi $x=y=z=\dfrac{3}{4}$
 
T

trungkien199

Ta có:
$\dfrac{1}{2x+y+z}=\dfrac{1}{4}.\dfrac{4}{2x+y+z}=\dfrac{1}{4}.\dfrac{4}{(x+y)+(x+z)} \le \dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z})=\dfrac{1}{16}.(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})$

TT có: $\dfrac{1}{x+2y+z} \le \dfrac{1}{16}.(\dfrac{1}{x}+2.\dfrac{1}{y}+\dfrac{1}{z})$

$\dfrac{1}{x+y+2z} \le \dfrac{1}{16}.(\dfrac{1}{x}+\dfrac{1}{y}+2.\dfrac{1}{z})$

Cộng theo vế, đc:
$ VT \le \dfrac{1}{16}.4.(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=1$

Dấu "=" xảy ra \Leftrightarrow $x=y=z=\dfrac{3}{4}$
Dấu $\le$ bạn nhé.Mình viết nhầm

Từ cái chỗ áp dụng BĐT $\dfrac{1}{a} + \dfrac{1}{b}$ \geq $\dfrac{4}{a+b}$ thì hiểu rồi. Nhưng mà cái chỗ $ \dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z})=\dfrac{1}{16}.(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})$ là như nào vậy. Chưa hiểu vì sao nó lại =, giải thích hộ mình vs :-SS:-SS
 
Last edited by a moderator:
V

vinhtuy

ssssssssssssss

Ta có:
$\dfrac{1}{2x+y+z}=\dfrac{1}{4}.\dfrac{4}{2x+y+z}=\dfrac{1}{4}.\dfrac{4}{(x+y)+(x+z)} \le \dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z}) \le \dfrac{1}{16}.(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})$

TT có: $\dfrac{1}{x+2y+z} \le \dfrac{1}{16}.(\dfrac{1}{x}+2.\dfrac{1}{y}+\dfrac{1}{z})$

$\dfrac{1}{x+y+2z} \le \dfrac{1}{16}.(\dfrac{1}{x}+\dfrac{1}{y}+2.\dfrac{1}{z})$

Cộng theo vế, đc:
$ VT \le \dfrac{1}{16}.4.(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=1$

Dấu "=" xảy ra \Leftrightarrow $x=y=z=\dfrac{3}{4}$
bạn giải bài đó đúng rồi đấy , dùng bđt cochy là ok !!!
 
Top Bottom