[Toán 9] Bất đẳng thức

T

transformers123

Bài 2:

Ta có: $a+b+c \ge 3\sqrt[3]{abc}$

$\Longrightarrow abc \le \dfrac{1}{27}$

Áp dụng bđt Holder, ta có:

$A=(\dfrac{1}{a^3}+1)(\dfrac{1}{b^3}+1)(\dfrac{1}{c^3}+1)$

$\iff A \ge (\sqrt[3]{\dfrac{1}{a^3}.\dfrac{1}{b^3}.\dfrac{1}{c^3}}+ \sqrt[3]
{1.1.1})^3$

$\iff A \ge (\dfrac{1}{abc}+1)^3$

$\iff A \ge (\dfrac{1}{\dfrac{1}{27}}+1)^3$

$\iff A \ge 21952$

Dấu "=" xảy ra khi $a=b=c=\dfrac{1}{3}$
 
L

lp_qt

) Cho $a,b,c>0$ . C/m $P=\dfrac{a}{b+c}+\dfrac{25b}{c+a}+\dfrac{4c}{a+b}>2$

Xem lại đề nhé!

$$\left\{\begin{matrix}x=b+c& \\ y=c+a & \\z=a+b & \end{matrix}\right. (x;y;z >0) \rightarrow \left\{\begin{matrix}a=\dfrac{y+z-x}{2} & \\ b=\dfrac{x+z-y}{2} & \\ c=\dfrac{y+x-z}{2} & \end{matrix}\right.$$

$$\rightarrow P=\dfrac{y+z-x}{2x}+\dfrac{25(x+z-y)}{2y}+\dfrac{4(y+x-z)}{2z}
=\left ( \dfrac{y}{2x} + \dfrac{25x}{2y} \right )+\left ( \dfrac{z}{2x}+ \dfrac{4x}{2z} \right )+\left ( \dfrac{25z}{2y} +\dfrac{4y}{2z} \right )-15 \ge 2$$

Nhưng dấu bằng không xảy ra. nên suy ra đpcm.
 
R

riverflowsinyou1

Bài 2:

Ta có: $a+b+c \ge 3\sqrt[3]{abc}$

$\Longrightarrow abc \le \dfrac{1}{27}$

Áp dụng bđt Holder, ta có:

$A=(\dfrac{1}{a^3}+1)(\dfrac{1}{b^3}+1)(\dfrac{1}{c^3}+1)$

$\iff A \ge (\sqrt[3]{\dfrac{1}{a^3}.\dfrac{1}{b^3}.\dfrac{1}{c^3}}+ \sqrt[3]
{1.1.1})^3$

$\iff A \ge (\dfrac{1}{abc}+1)^3$

$\iff A \ge (\dfrac{1}{\dfrac{1}{27}}+1)^3$

$\iff A \ge 21952$

Dấu "=" xảy ra khi $a=b=c=\dfrac{1}{3}$
Nếu ko dùng bđt Holder :| ............................................................................................
 
Top Bottom