[toán 9] bất đẳng thức

S

san1201

Last edited by a moderator:
E

eye_smile

Ta có:
$\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}$ \geq $2$
\Rightarrow $\dfrac{1}{1+a}$ \geq $\dfrac{b}{1+b}+\dfrac{c}{1+c}$
AD-GM, được:
$\dfrac{b}{1+b}+\dfrac{c}{1+c}$ \geq $2\sqrt{\dfrac{bc}{(1+b)(1+c)}}$
TT, ta được:
$\dfrac{1}{1+b}$ \geq $2\sqrt{\dfrac{ac}{(1+a)(1+c)}}$
$\dfrac{1}{1+c}$ \geq $2\sqrt{\dfrac{ab}{(1+a)(1+b)}}$
Nhân theo vế, được:
$\dfrac{1}{(1+a)(1+b)(1+c)}$ \geq $8.\dfrac{abc}{(1+a)(1+b)(1+c)}$
\Leftrightarrow $abc$ \leq $\dfrac{1}{8}$
Dấu "=" xảy ra \Leftrightarrow $a=b=c=\dfrac{1}{2}$
 
Last edited by a moderator:
Top Bottom