[Toán 9]Bất đẳng thức

C

congchuaanhsang

Đặt a=$\dfrac{1}{x}$ ; b=$\dfrac{1}{y}$ ; c=$\dfrac{1}{z}$\Rightarrowx,y,z>0 và xyz=1
Gọi A là vế trái của BĐT
A=$\dfrac{1}{\dfrac{1}{x^3}(\dfrac{1}{y}+\dfrac{1}{z})}$+$\dfrac{1}{\dfrac{1}{y^3}(\dfrac{1}{x}+ \dfrac{1}{z} )}$+$\dfrac{1}{\dfrac{1}{z^3}(\dfrac{1}{x}+ \dfrac{1}{y}) }$
\LeftrightarrowA=$\dfrac{x^2}{y+z}$+$\dfrac{y^2}{x+z}$+$\dfrac{z^2}{x+y}$
Áp dụng BĐT Cauchy - Schwarz
A=$\dfrac{x^2}{y+z}$+$\dfrac{y^2}{x+z}$+$\dfrac{z^2}{x+y}$\geq$\dfrac{(x+y+z)^2}{2(x+y+z)}$=$\dfrac{x+y+z}{2}$
Áp dụng BĐT Cauchy: x+y+z\geq3$\sqrt[3]{xyz}$=3\Rightarrow$\dfrac{x+y+z}{2}$\geq$\dfrac{3}{2}$
\RightarrowA\geq$\dfrac{3}{2}$
Dấu "=" xảy ra \Leftrightarrow a=b=c=1
 
C

congchuaanhsang

Đây bạn nhé:

$\dfrac{1}{x^3(\dfrac{1}{y}+\dfrac{1}{z})}$=$\dfrac{1}{\dfrac{y+z}{x^3yz}}$

xyz=1\Rightarrow$x^3yz$=$x^2$

\Rightarrow$\dfrac{1}{\dfrac{y+z}{x^3yz}}$=$\dfrac{1}{\dfrac{y+z}{x^2}}$=$\dfrac{x^2}{y+z}$
 
Last edited by a moderator:
Top Bottom