[toán 9] bài về BĐT

H

hien_vuthithanh

cho 3 số dương a, b, c thỏa mãn $ab + bc +ac = 3abc$

tìm MaX : F = $\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}$

$ab+bc+ca \ge 3 \sqrt[3]{(abc)^2}\leftrightarrow 3abc \ge 3 \sqrt[3]{(abc)^2} \rightarrow abc \ge 1$

$a+b+c \ge 3 \sqrt[3]{abc}\ge 3 $

$ab + bc +ac = 3abc \rightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3$

Có: $\dfrac{4}{a+2b+3c} =\dfrac{4}{(a+b+c)+(b+2c)}\le \dfrac{1}{a+b+c}+\dfrac{1}{b+2c} \le \dfrac{1}{3}+\dfrac{1}{b+2c}$

TT $\rightarrow 4F \le 1+\dfrac{1}{b+2c}+\dfrac{1}{a+2b}+\dfrac{1}{c+2a}$ (*)

Lại có : $\dfrac{9}{a+2b}=\dfrac{9}{a+b+b}\le \dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}$

TT $\rightarrow 9(\dfrac{1}{b+2c}+\dfrac{1}{a+2b}+\dfrac{1}{c+2a}) \le 3( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})=3.3=9$

$\rightarrow \dfrac{1}{b+2c}+\dfrac{1}{a+2b}+\dfrac{1}{c+2a} \le 1$(*)(*)

Từ (*) ,(*)(*) $\rightarrow 4F \le 1+1=2 \rightarrow F \le \dfrac{1}{2}$



Đề TS Thái Bình 2014-2015
 
L

lp_qt

$ab + bc +ac = 3abc \rightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3$

$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c} \ge \dfrac{6^2}{a+2b+3c}$

$\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c} \ge \dfrac{6^2}{2a+3b+c}$

$\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c} \ge \dfrac{6^2}{3a+b+2c}$

$\Longrightarrow 6.(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}) \ge 36F \Longleftrightarrow F \le \dfrac{1}{2}$
 
Top Bottom