Đặt $\sqrt{x-5}=u$ và $\sqrt{13-x}=v$
$u^2+v^2=8$
Đặt $u=2\sqrt{2}\sin t; v= 2\sqrt{2}\cos t$ với $t\in \left [0; \dfrac{\pi}{2}\right ]$
$\sqrt{x-5}+\sqrt{13-x}=2\sqrt{2}(\sin t + \cos t)=4\sin \left (t+\dfrac{\pi}{4} \right ) \le 4$
$\text{max P}=4 \leftrightarrow \sin \left (t+\dfrac{\pi}{4} \right )=1$
$\leftrightarrow t=\dfrac{\pi}{4} \leftrightarrow 2\sqrt{2}\sin t = 2 \to u=2\to x=9$