P
phamquanghung1997


1.
B= ([TEX]\frac{1 + \sqrt{1 - x}}{1 - x + \sqrt{1 - x}} + \frac{1 - \sqrt{1 + x}}{1 + x - \sqrt{1 + x}} + \frac{1}{\sqrt{1 + x}}[/TEX]
A= [TEX]\sqrt{2 - \sqrt{3}} . (\sqrt{6} + \sqrt{2})[/TEX]
C= [TEX]\sqrt{x^2 + 2\sqrt{x^2 - 1}} - \sqrt{x^2 - 2\sqrt{x^2 - 1}}[/TEX]
D= [TEX]\frac{15 \sqrt{5} - 11}{x} - \frac{2\sqrt{x} +3}{\sqrt{x} + 3} - \frac{2- 3\sqrt{x}}{1 - \sqrt{x}}[/TEX][/SIZE]
B= ([TEX]\frac{1 + \sqrt{1 - x}}{1 - x + \sqrt{1 - x}} + \frac{1 - \sqrt{1 + x}}{1 + x - \sqrt{1 + x}} + \frac{1}{\sqrt{1 + x}}[/TEX]
A= [TEX]\sqrt{2 - \sqrt{3}} . (\sqrt{6} + \sqrt{2})[/TEX]
C= [TEX]\sqrt{x^2 + 2\sqrt{x^2 - 1}} - \sqrt{x^2 - 2\sqrt{x^2 - 1}}[/TEX]
D= [TEX]\frac{15 \sqrt{5} - 11}{x} - \frac{2\sqrt{x} +3}{\sqrt{x} + 3} - \frac{2- 3\sqrt{x}}{1 - \sqrt{x}}[/TEX][/SIZE]
Last edited by a moderator: