Q = [tex]\left ( \frac{1}{x + 1} + \frac{3(2x + 1)}{x^3 + 1} - \frac{2}{x^2 - x + 1} \right )[/tex] : (x + 2)
= [tex]\frac{x^2 - x + 1}{(x + 1)(x^2 - x + 1)} + \frac{6x + 3}{(x + 1)(x^2 - x + 1)} - \frac{2(x + 1)}{(x + 1)(x^2 - x + 1)}[/tex] : (x + 2)
= [tex]\frac{x^2 - x + 1 + 6x + 3 - 2x - 2}{(x + 1)(x^2 - x + 1)}[/tex] : (x + 2)
= [tex]\frac{x^2 + 3x + 2}{(x + 1)(x^2 - x + 1)}[/tex] : (x + 2)
= [tex]\frac{(x + 1)(x + 2)}{(x + 1)(x^2 - x + 1)}.\frac{1}{x + 2}[/tex]
= [tex]\frac{1}{x^2 - x + 1}[/tex]
b,
TH1: x + [tex]\frac{5}{3}[/tex] = [tex]\frac{1}{3}[/tex] => x = [tex]\frac{- 4}{3}[/tex]
Thay vào Q, ta có:
[tex]\frac{1}{x^2 - x + 1}[/tex] = [tex]\frac{1}{(\frac{-4}{3})^2 - (\frac{- 4}{3}) + 1}[/tex] = [tex]\frac{9}{37}[/tex]
TH2: x + [tex]\frac{5}{3}[/tex] = [tex]\frac{- 1}{3}[/tex] => x = - 2
Thay vào Q, ta có:
[tex]\frac{1}{x^2 - x + 1}[/tex] = [tex]\frac{1}{(- 2)^2 - (- 2) + 1}[/tex] = [tex]\frac{1}{7}[/tex]
c,
Q = [tex]\frac{1}{3}[/tex]
=> [tex]\frac{1}{x^2 - x + 1}[/tex] = [tex]\frac{1}{3}[/tex]
=> [TEX]x^2 - x + 1[/TEX] = 3
=> [TEX]x^2 - x - 2[/TEX] = 0
=> [TEX](x^2 + x) - (2x + 2)[/TEX] = 0
=> x(x + 2) - 2(x + 1) = 0
=> (x - 2)(x + 1) = 0
=> x = 2 hoặc x = -1
d,
Q = [tex]\frac{1}{x^2 - x + 1}[/tex]
= [tex]\frac{1}{(x^2 - x + \frac{1}{4}) + \frac{3}{4}}[/tex]
= [tex]\frac{1}{(x - \frac{1}{2})^2 + \frac{3}{4}}[/tex]
Vì [tex](x - \frac{1}{2})^2 \geq 0[/tex]
=> [tex](x - \frac{1}{2})^2 + \frac{3}{4} \geq \frac{3}{4}[/tex]
=> [tex]\frac{1}{(x - \frac{1}{2})^2 + \frac{3}{4}} \leq \frac{4}{3}[/tex]
Dấu "=" xảy ra <=> x = [tex]\frac{1}{2}[/tex]
Vậy Max Q = [tex]\frac{4}{3}[/tex] <=> x = [tex]\frac{1}{2}[/tex]