CÂU 1:
[TEX]a) x^3+8y^3=x^3+(2y)^3=(x+2y)(x^2-2xy+4y^2)[/TEX]
[TEX] b) 3x^2-9x=3x(x-3)[/TEX]
[TEX]c) 3x^2-3xy-5x+5y=x(3x-5)-y(3x-5)=(x-y)(3x-5)[/TEX]
[TEX]d)x^3+5x^2-6x=x(x^2+5x-6)=x(x^2-x+6x-6)=x(x-1)(x+6)[/TEX]
Câu 2:
ta có:
[TEX](\frac{1}{x^2-4x}+\frac{2}{16-x^2}+\frac{1}{4x+16}):\frac{1}{4x}[/TEX]
[TEX]=(\frac{1}{x^2-4x}-\frac{2}{x^2-16}+\frac{1}{4x+16}):\frac{1}{4x}[/TEX]
[TEX]=(\frac{1}{x(x-4)}+\frac{2}{(x-4)(x+4)}+\frac{1}{4(x+4)}:\frac{1}{4x}[/TEX]
[TEX]=\frac{4(x+4)-4.2x+(x-4)x}{4x(x-4)(x+4)}.4x[/TEX]
[TEX]=\frac{4x+16-8x+x^2-4x}{4x(x-4)(x+4)}.4x[/TEX]
[TEX]=\frac{x^2-8x+16}{(x-4)(x+4)}[/TEX]
[TEX]=\frac{(x-4)^2}{(x-4)(x+4)}[/TEX]
[TEX]=\frac{x-4}{x+4}[/TEX]
CÂU 3:
[TEX]a) x\not= \2[/TEX]
[TEX]b) A=x+\frac{1}{x-2}=\frac{x^2-2x+1}{x-2}=\frac{(x-1)^2}{x-2}[/TEX]
[TEX]c) A=\frac{x^2-2x+1}{x-2}=2 [/TEX]
\Rightarrow [TEX]x^2-2x+1=2(x-2)[/TEX]
\Rightarrow[TEX]x^2-2x+1-2x+4=x^2-4x+5=(x-2)^2+1=0(vô lí)[/TEX]
\Rightarrow x ko có nghiệm.
Vậy phương trình vô nghiệm khi A=2.