[TEX]1. Cho x,y,z \in Z[/TEX]và [TEX] a,b,c \neq 0[/TEX] thỏa mãn [TEX]\frac {x^2}{a^2}+ \frac {y^2}{b^2}+\frac {z^2}{c^2}=\frac {x^2+y^2+z^2}{a^2+b^2+c^2}[/TEX]
Tính [TEX]M=x^{2013}+y^{2013}+z^{2013}[/TEX]/
Ta có:$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} + \dfrac{{{z^2}}}{{{c^2}}} = \dfrac{{{x^2} + {y^2} + {z^2}}}{{{a^2} + {b^2} + {c^2}}}$
$ \leftrightarrow \dfrac{{{x^2}{b^2}{c^2} + {y^2}{a^2}{c^2} + {z^2}{a^2}{b^2}}}{{{a^2}{b^2}{c^2}}} = \dfrac{{{x^2} + {y^2} + {z^2}}}{{{a^2} + {b^2} + {c^2}}}$
$ \leftrightarrow \left( {{x^2}{b^2}{c^2} + {y^2}{a^2}{c^2} + {z^2}{a^2}{b^2}} \right)\left( {{a^2} + {b^2} + {c^2}} \right) = {a^2}{b^2}{c^2}\left( {{x^2} + {y^2} + {z^2}} \right)$
$ \leftrightarrow {a^2}{b^2}{c^2}\left( {{x^2} + {y^2} + {z^2}} \right) + {\left( {x{b^2}c} \right)^2} + {\left( {xb{c^2}} \right)^2} + {\left( {y{a^2}c} \right)^2} + {\left( {ya{c^2}} \right)^2} + {\left( {z{a^2}b} \right)^2} + {\left( {za{b^2}} \right)^2} = {a^2}{b^2}{c^2}\left( {{x^2} + {y^2} + {z^2}} \right)$
$ \leftrightarrow {\left( {x{b^2}c} \right)^2} + {\left( {xb{c^2}} \right)^2} + {\left( {y{a^2}c} \right)^2} + {\left( {ya{c^2}} \right)^2} + {\left( {z{a^2}b} \right)^2} + {\left( {za{b^2}} \right)^2} = 0$
$ \leftrightarrow x = y = z = 0\left( {a,b,c \ne 0} \right)$
$ \to A = {x^{2013}} + {y^{2013}} + {z^{2013}} = 0$