[TEX](1+\frac{1}{a}).(1+\frac{1}{b}).(1+\frac{1}{c}) = 1 + (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) + (\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac}) + \frac{1}{abc}[/TEX]
[TEX]= 1+ (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) + (\frac{a+b+c}{abc} + \frac{1}{abc}) ( * )[/TEX]
Do a+b+c=1 nên ( * ) = [TEX]1+ (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) + \frac{2}{abc} (**)[/TEX]
Vì a,b,c>0 nên áp dụng BDT cô-si, ta có:
a+b+c \geq 3³√abc (1)
[TEX]\frac{1}{a} + \frac{1}{b} + \frac{1}{c}[/TEX] \geq 3³√(1/abc) (2)
[TEX]\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{9}{a+b+c} = 9[/TEX]
[TEX](1) \Rightarrow abc \leq \frac{1}{27} \Rightarrow \frac{1}{abc} \geq 27[/TEX]
[TEX](**) \geq 1+9+2.27 = 64[/TEX]
Dấu = xảy ra khi [TEX]a=b=c=\frac{1}{3}[/TEX]
___________________
Chúc bạn học tốt!