toan 8

K

kool_boy_98

[TEX](1+\frac{1}{a}).(1+\frac{1}{b}).(1+\frac{1}{c}) = 1 + (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) + (\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac}) + \frac{1}{abc}[/TEX]

[TEX]= 1+ (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) + (\frac{a+b+c}{abc} + \frac{1}{abc}) ( * )[/TEX]

Do a+b+c=1 nên ( * ) = [TEX]1+ (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) + \frac{2}{abc} (**)[/TEX]

Vì a,b,c>0 nên áp dụng BDT cô-si, ta có:

a+b+c \geq 3³√abc (1)

[TEX]\frac{1}{a} + \frac{1}{b} + \frac{1}{c}[/TEX] \geq 3³√(1/abc) (2)

[TEX]\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{9}{a+b+c} = 9[/TEX]

[TEX](1) \Rightarrow abc \leq \frac{1}{27} \Rightarrow \frac{1}{abc} \geq 27[/TEX]

[TEX](**) \geq 1+9+2.27 = 64[/TEX]

Dấu = xảy ra khi [TEX]a=b=c=\frac{1}{3}[/TEX]
___________________
Chúc bạn học tốt!
 
B

braga

Cách khác, ngắn gọn hơn.:D

Ta có:
$$1+a=a+a+b+c \geq 4\sqrt[4]{a^2bc}$$
$$1+b=a+b+b+c \geq 4\sqrt[4]{ab^2c}$$
$$1+c=a+b+c+c \ge 4\sqrt[4]{abc^2}$$
Nhân theo vế ta được :
$$(1+a)(1+b)(1+c) \geq 4.4.4\sqrt[4]{(abc)^4}=64abc$$
$$\Rightarrow (1+\frac{1}{b})(1+\frac{1}{b})(1+\frac{1}{c}) \geq 64$$

Dấu $"="$ xảy ra $\Leftrightarrow a=b=c=\frac{1}{3}$
 
Last edited by a moderator:
Top Bottom