C
changmongmo1903
![](https://blog.hocmai.vn/wp-content/uploads/2017/07/hot.gif)
![](https://blog.hocmai.vn/wp-content/uploads/2017/07/hot.gif)
1.Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a) Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ?
b) Chứng minh rằng : CH.CD = CB.CK
c) Chứng minh rằng : AB.AH + AD.AK = AC^2
2. Cho tam giác ABC. Các điểm M, N theo thứ tự thuộc các cạnh AB, AC sao cho diện tích tam giác AMN bằng một nửa diện tích tam giác ABC (M ≠ B ; N ≠ C). Chứng minh : Trọng tâm của tam giác ABC nằm trong tam giác AMN.
3. Cho ΔABC nhọn, ba đường cao AD, BE và CF cắt nhau tại H. Qua A vẽ các đường thẳng song song với BE, CF lần lượt cắt các đường thẳng CF, BE tại P và Q. Chứng minh rằng PQ vuông góc với trung tuyến AM của ΔABC.
a) Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ?
b) Chứng minh rằng : CH.CD = CB.CK
c) Chứng minh rằng : AB.AH + AD.AK = AC^2
2. Cho tam giác ABC. Các điểm M, N theo thứ tự thuộc các cạnh AB, AC sao cho diện tích tam giác AMN bằng một nửa diện tích tam giác ABC (M ≠ B ; N ≠ C). Chứng minh : Trọng tâm của tam giác ABC nằm trong tam giác AMN.
3. Cho ΔABC nhọn, ba đường cao AD, BE và CF cắt nhau tại H. Qua A vẽ các đường thẳng song song với BE, CF lần lượt cắt các đường thẳng CF, BE tại P và Q. Chứng minh rằng PQ vuông góc với trung tuyến AM của ΔABC.