[Toán 8] Tính

L

ledinhlocpt

Last edited by a moderator:
H

hocgioi2013

Bài 2:
$\dfrac{xyz}{z^3}+{xyz}{y^3}+{xyz}{x^3}$
(xyz)(1/x+1/y+1/z)
 
Last edited by a moderator:
H

huy14112

1.

$3a^2+3b^2=10ab$

$\rightarrow3a^2+6ab+3b^2=16ab$

$3(a+b)^2=16ab$

$(a+b)^2=\dfrac{16ab}{3}$

Tương tự :$(a-b)^2=\dfrac{4ab}{3}$

$\rightarrow \dfrac{(a-b)^2}{(a+b)^2} =\dfrac{\dfrac{4ab}{3}}{\dfrac{16ab}{3}}=\dfrac{1}{4}$

$\rightarrow \dfrac{a-b}{a+b}=\dfrac{1}{2}$ hoặc $\dfrac{-1}{2}$

 
V

vipboycodon

bài 1:
Ta có : $A = \dfrac{a-b}{a+b}$
=> $A^2 = \dfrac{(a-b)^2}{(a+b)^2} = \dfrac{3(a^2-2ab+b^2)}{3(a^2+2ab+b^2)} = \dfrac{3a^2-6ab+3b^2}{3a^2+6ab+3b^2} = \dfrac{4ab}{16ab} = \dfrac{1}{4} $
=> $A = \pm \dfrac{1}{2}$
 
Last edited by a moderator:
C

chonhoi110

Bài 2:
$\dfrac{xyz}{z^3}+{xyz}{y^3}+{xyz}{x^3}$
$\dfrac{xyz}{1/x+1/y+1/z}$
Mình chả hiểu bạn làm cái gì cả :D

Giải:
Có: $\dfrac{1}{x}+\dfrac{1}{y}+ \dfrac{1}{z}=0 \rightarrow \dfrac{1}{x}+\dfrac{1}{y}=-\dfrac{1}{z}$

$\leftrightarrow (\dfrac{1}{x}+ \dfrac{1}{y})^3=-(\dfrac{1}{z})^3$

$\leftrightarrow \dfrac{1}{x^3}+\dfrac{3}{x^2y}+ \dfrac{3}{xy^2}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=0$

$\leftrightarrow \dfrac{1}{x^3}+\dfrac{1}{y^3}+ \dfrac{1}{z^3}+3.\dfrac{1}{xy}(\dfrac{1}{x}+\dfrac{1}{y})=0$

$\leftrightarrow \dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}= \dfrac{3}{xyz}$

$\rightarrow Q=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3})=3$
 
H

huy14112

Cách của bạn chonhoi110 hơi dài.

Thế này cho nhanh :

$\dfrac{1}{x}+\dfrac{1}{y}+ \dfrac{1}{z}=0 \rightarrow xy+yz+xz =0 $

$\rightarrow xy=-z(x+y) ; xz=-y(x+z) ; yz = -x(y+z) $

Thay vào có :

$\dfrac{-z(x+y)}{z^2}+\dfrac{-y(x+z)}{y^2}+\dfrac{-x(y+z)}{x^2} $

$=-\dfrac{x+y}{z} -\dfrac{y+z}{x}-\dfrac{x+z}{y}$

$=-\dfrac{x+y}{z}-1-\dfrac{y+z}{x}-1-\dfrac{x+z}{y}-1+3$

$=-\dfrac{x+y+z}{z}-\dfrac{x+y+z}{x}-\dfrac{x+y+z}{y}+3$

$=-(x+y+z)(\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x})+3$

$=0+3=3$



 
Top Bottom