[Toán 8] Tính GTBT với điều kiện cho sẵn

P

phamvananh9

đội 1

[TEX][/TEX]
Có: $ P.\frac{c}{a-b}=(\frac{a-b}{c}+\frac{b-c-}{a}+\frac{c-a}{b}).\frac{c}{a-b}
= 1+\frac{c}{a-b}.(\frac{b-c}{a}+\frac{c-a}{b})
= 1 + \frac{c}{a-b}.\frac{b^2- bc +ac-a^2}{ab}
= 1+\frac{c}{a-b}.\frac{(a-b)(c-a-b)}{ab}
= 1+\frac{2c^3}{ab}=1+\frac{2c^3}{abc}
Tương tự ta có: P.\frac{a}{b-c}=1+\frac{2a^3}{abc}
P.\frac{b}{c-a}=1+ \frac{2b^3}{abc}
=> P.Q= 3 + \frac{2(a^3 + b^3 + c^3)}{abc}=3+\frac{2.3abc}{abc}=9
( Vì a+b+c=0 nên ta suy ra được : a^3 +b^3 +c^3=3abc) .$
 
T

trang2622000

nay ban den day ta se lam tiep la voi a+B+C=0 thi a^3+B^3+C^3=3abc suy ra tiep nheeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee:(:(:(:(:(:(:(:(:(:(:(
 
Top Bottom