[Toán 8] Tính chu vi hình MNPQ

N

nhocsama_98

Last edited by a moderator:
L

luffy_1998

Đặt AB = p, AM = a ta có:
$\dfrac{p - a}{p} = \dfrac{MN}{x} \rightarrow MN = \dfrac{p-a}{p}.x$
$\dfrac{AQ}{AM} = \dfrac{AD}{AB} = \dfrac{BC}{AB} = \dfrac{BN}{BM}$
$\widehat{QAM} = \widehat{MBN} = 90^o \rightarrow \triangle AQM ~ \triangle BNM \rightarrow \dfrac{AM}{MB} = \dfrac{QM}{MN} \rightarrow QM = \dfrac{a}{p - a}.MN$
MNPQ là hbh nên $P_{MNPQ} = 2(MN + MQ) = 2MN(1 + \dfrac{a}{p - a}) = 2. \dfrac{p - a}{p}x . \dfrac{p}{p - a} = 2x$
 
Top Bottom