[Toán 8] Tìm x!

H

huynhbachkhoa23

Bài 1:

$VT=(2x-5)^3-[(5x-8)^3+(3-3x)^3]=(2x-5)^2-(2x-5)[(5x-8)^2+(5x-8)(3-3x)+(3-3x)^2]=(2x-5)[......]=0$
 
0

0973573959thuy

$8(x + \dfrac{1}{x})^2 + 4(x^2 + \dfrac{1}{x^2})^2 - 4(x + \dfrac{1}{x})^2(x^2 + \dfrac{1}{x^2}) = (x - 4)^2$

$\leftrightarrow 8(x + \dfrac{1}{x})^2 + 4(x^2 + \dfrac{1}{x^2})(x^2 + \dfrac{1}{x^2} - x^2 - \dfrac{1}{x^2} - 2) = (x - 4)^2$

$\leftrightarrow 8(x + \dfrac{1}{x})^2 - 8(x^2 + \dfrac{1}{x^2}) = (x - 4)^2$

$\leftrightarrow 8(x + \dfrac{1}{x})^2 - 8[(x + \dfrac{1}{x})^2 - 2] = (x - 4)^2$

$\leftrightarrow 8(x + \dfrac{1}{x})^2 - 8(x + \dfrac{1}{x})^2 + 16 = (x - 4)^2$

$\leftrightarrow (x - 4)^2 = 16$

$\leftrightarrow x - 4 = 4; x = 8$ hoặc $x - 4 = - 4; x = 0$
 
Top Bottom