You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser.
$B=\dfrac{x^6+512}{x^2+8}$
$=\dfrac{(x^2+8)(x^4-8x^2+64)}{x^2+8}$
$=x^4-8x^2+64=(x^4-8x^2+16)+48=(x^2-4)^2+48 \ge 48$
$B_{min}=48$ \Leftrightarrow $x= \pm 2$
$A= \dfrac{x^6 +27}{x^4-3x^3 +6x^2-9x+9}$
Biến đổi $A= \dfrac{(x^2 +3)(x^4-3x^2+9)}{x^4+6x^2+9-3x^3 -9x} \\ =\dfrac{(x^2 +3)(x^4-3x^2+9)}{(x^2 +3)^2-3(x^2 +3)} \\ =\dfrac{x^4-3x^2+9}{x^2 +3-3} \\ =\dfrac{x^4-3x^2+9}{x^2} \\ =x^2-3+\dfrac{9}{x^2}$
Cô si 2 số ta có $x^2+\dfrac{9}{x^2} \ge 6$
\Rightarrow $A \ge 6-3=3$
Min A = 3 \Leftrightarrow $x^2=\dfrac{9}{x^2}$ \Leftrightarrow $x^2 =3.$