[Toán 8] Thu gọn các bt sau

L

long09455

T

transformers123

c/ Đặt bt trên là $A$, ta có:
$A=\dfrac{(2^2-1)(3^2-1)(4^2-1)...(1998^2-1)}{2^2.3^2.4^2...1998^2}$
$\iff A=\dfrac{1.3.2.4.3.4...1997.1999}{2^2.3^2.4^2...1998^2}$
$\iff A=\dfrac{1.1999}{2.1998}=\dfrac{1999}{3996}$
 
Q

quynhsieunhan

c, Có: $1 - \frac{1}{n^2} = \frac{n^2 - 1}{n^2} = \frac{(n - 1)(n + 1)}{n^2}$
\Rightarrow C = $(1 - \frac{1}{2^2})(1 - \frac{1}{3^2})...(1 - \frac{1}{1998^2})$
= $\frac{2^2 - 1}{2^2}.\frac{3^2 - 1}{3^2}....\frac{1998^2 - 1}{1998^2}$
= $\frac{(1.3)(2.4)(3.5)(4.6)....(1996.1998)(1997.1999)}{2^2.3^2....1998^2}$
= $\frac{2.1998.1999}{2^2.1998^2}$
= $\frac{1999}{2.1998}$
 
Top Bottom