[Toán 8] tam giác đồng dạng

G

girl_lovely_2000

Last edited by a moderator:
N

nhuquynhdat

a) CM: $\Delta ABE \sim \Delta ACF (g-g) \to \dfrac{AB}{AC}=\dfrac{AE}{AF} \to \dfrac{AE}{AB}=\dfrac{AF}{AC}$

Xét $\Delta AEF$ và $\Delta ABC$ có:

$\widehat{A}$ chung

$\dfrac{AE}{AB}=\dfrac{AF}{AC}$

$\to \Delta AEF \sim \Delta ABC (c-g-c)$ (1)


CM: $\Delta BDA \sim \Delta BFC (g-g) $

Tương tự CM: $\Delta DBF \sim \Delta ABC (c-g-c)$(2)

Từ (1) và (2) $\to \Delta AEF \sim \Delta DBF$
 
T

thaolovely1412

b) $ \Delta AEF \sim \Delta ABC $
\Rightarrow [TEX]\frac{AF}{AE}=\frac{AC}{AB}[/TEX] (1)
$\Delta BDA \sim \Delta BFC $
\Rightarrow [TEX]\frac{BD}{FB}=\frac{AB}{BC}[/TEX] (2)
Dễ chứng minh: $\Delta CEB \sim \Delta CDA (g.g) $
\Rightarrow [TEX]\frac{CE}{CD}=\frac{BC}{AC}[/TEX] (3)
Từ (1);(2);(3) ta có:
[TEX]\frac{AF}{FB}.\frac{BD}{CD}.\frac{CE}{EA}= \frac{AF.BD.CE}{FB.CD.EA}=\frac{AF}{AE}. \frac{BD}{FB}.\frac{CE}{CD}=\frac{AC}{AB}.\frac{AB}{BC}.\frac{BC}{AC}=1[/TEX]
 
N

nhuquynhdat

b) Cách khác

Ta có: $\dfrac{AF}{BF}=\dfrac{S_{ACF}}{S_{BCF}}=\dfrac{S_{AHF}}{S_{BHF}}=\dfrac{S_{ACF}-S_{ACF}}{S_{BCF}-S_{BHF}}=\dfrac{S_{AHC}}{S_{BHC}}$ (1)

Tương tự, ta có: $\dfrac{BD}{CD}=\dfrac{S_{ABH}}{S_{ACH}}$ (2)

$\dfrac{CE}{AE}=\dfrac{S_{BHC}}{S_{BHA}}$ (3)

Từ (1), (2) và (3) $\to \dfrac{AF}{BF}.\dfrac{BD}{CD}.\dfrac{CE}{AE}= \dfrac{S_{AHC}}{S_{BHC}}.\dfrac{S_{ABH}}{S_{ACH}}. \dfrac{S_{BHC}}{S_{BHA}}=1$
 
Top Bottom