[Toán 8] Talet

N

nhat2701

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Bài 1/ Cho tam giác ABC cân tại A, có góc A = 20 độ. Trên nửa mặt phẳng có bờ AB chứa điểm C. Vẽ tam giác đều ABD, BD cắt AC tại E, gọi AF là phân giác của AED.
a/ C/m $BC^2 = CA . CE$
b/ C/m $AC . EF = BC . AF$
c/ C/m tam giác BCF cân
 
Last edited by a moderator:
N

nhuquynhdat

a) Ta có: $\Delta ABC$ cân tại A $\Longrightarrow \widehat{ABC}=\widehat{ACB}=\dfrac{180^o-20^o}{2}=80^o$

Mặt khác: $\widehat{ABC}=\widehat{ABE}+\widehat{CBE} \Longrightarrow \widehat{CBE}=\widehat{ABC}-\widehat{ABE}=80^o-60^o=20^o \Longrightarrow \widehat{BAC}=\widehat{CBE}=20^o$

Xét $\Delta ABC$ và $\Delta BCE$ có

$\widehat{BCA}$ chung; $\widehat{BAC}=\widehat{CBE} \Longrightarrow \Delta ABC \sim \Delta BCE (g-g) \Longrightarrow \dfrac{BC}{CE}=\dfrac{AB}{BC}=\dfrac{AC}{BC} \Longrightarrow BC^2=AC.CE$

b) CM: $\Delta ABC \sim \Delta AEF(g-g) \Longrightarrow \dfrac{AC}{AF}=\dfrac{BC}{EF} \Longrightarrow AC.EF=BC.AF$

c) Từ $ \Delta ABC \sim \Delta BCE$ và $\Delta ABC \sim \Delta AEF \Longrightarrow \Delta BCE \sim \Delta AEF \Longrightarrow \dfrac{BC}{AE}=\dfrac{CE}{EF} \Longrightarrow \dfrac{AE}{EF}=\dfrac{BE}{CE}$

CM: $\Delta ABE \sim \Delta FCE (c-g-c) \Longrightarrow \widehat{BAE}=\widehat{CFE}=20^o$

$\Longrightarrow \widehat{CBE}=\widehat{CFE}=20^o \Longrightarrow \Delta BCF$ cân tại C
 
Top Bottom