$P=\dfrac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}$
$\iff P=\dfrac{(x^2-2)(x^2+x+1)}{(x^2+2x+1)(x^2-2)}$
$\iff P=\dfrac{x^2+x+1}{x^2+2x+1}$
$\iff \dfrac{4P}{3}=\dfrac{4x^2+4x+4}{3x^2+6x+3}$
$\iff \dfrac{4P}{3}=\dfrac{3x^2+6x+3+x^2-2x+1}{3x^2+6x+3}$
$\iff \dfrac{4P}{3}=\dfrac{(x-1)^2}{3x^2+6x+3}+1$
$\Longrightarrow \dfrac{4P}{3} \ge 1$
$\iff P \ge \dfrac{3}{4}$
Dấu "=" xảy ra khi $x-1=0 \iff x=1$
Bên dưới có nút "đúng", có gì bạn bấm vào =))