[toán 8] phân thức

Q

quochuydoankg

Last edited by a moderator:
V

vipboycodon

$(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}).\dfrac{4x^2-4}{5}$
= $[\dfrac{x+1}{2(x-1)}+\dfrac{3}{(x-1)(x+1)}-\dfrac{x+3}{2(x+1)}].\dfrac{4(x-1)(x+1)}{5}$ (1)
Đk : $\begin{cases} x \ne 1 \\ x \ne -1 \end{cases}$
(1) => $[\dfrac{(x+1)^2}{2(x-1)(x+1)}+\dfrac{6}{2(x-1)(x+1)}-\dfrac{(x+3)(x-1)}{2(x-1)(x+1)}].\dfrac{4(x-1)(x+1)}{5}$
= $\dfrac{x^2+2x+1+6-x^2+x-3x+3}{2(x-1)(x+1)}.\dfrac{4(x-1)(x+1)}{5}$
= $\dfrac{10}{2(x-1)(x+1)}.\dfrac{4(x-1)(x+1)}{5}$
= 4
=> Biểu thức không phụ thuộc vào x.
 
Top Bottom