chứng minh : (x - 1)(x - 2)(x - 3)(x - 4) >= -1
Giúp tớ vs
( híc híc . nghĩ mãi ko ra ạ
Ta có:
$A = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\left( {x - 4} \right)$
$ = \left[ {\left( {x - 1} \right)\left( {x - 4} \right)} \right]\left[ {\left( {x - 2} \right)\left( {x - 3} \right)} \right]$
$ = \left( {{x^2} - 5x + 4} \right)\left( {{x^2} - 5x + 6} \right)$
Đặt ${x^2} - 5x + 5 = y$
\Rightarrow $A = \left( {y - 1} \right)\left( {y + 1} \right)$
$ = {y^2} - 1 \ge - 1\forall y \in R$
Dấu "=" xảy ra \Leftrightarrow $y = 0$
\Leftrightarrow ${x^2} - 5x + 5 = 0$
\Leftrightarrow ${x^2} - 2x.2,5 + 6,25 - 1,25 = 0$
\Leftrightarrow ${\left( {x - 2,5} \right)^2} = 1,25$
\Leftrightarrow $\left[ {\begin{array}{*{20}{c}}
{x - 2,5 = \sqrt {1,25} } \\
{x - 2,5 = - \sqrt {1,25} } \\
\end{array}} \right.$
\Leftrightarrow $\left[ {\begin{array}{*{20}{c}}
{x = \sqrt {1,25} + 2,5} \\
{x = 2,5 - \sqrt {1,15} } \\
\end{array}} \right.$