[Toán 8] GTNN

H

hiensau99

a, $A= (x-1)(x-3)+11= x^2-4x + 14 = (x-2)^2 + 10 $
Ta có: $(x-2)^2 \ge 0 \to (x-2)^2 + 10 \ge 10 $
Dấu "=" xảy ra $\leftrightarrow (x-2)^2 = 0 \leftrightarrow x=2$
Min A= 10 $\leftrightarrow x=2$

b, $B= x^2+y^2-x+6y+10= (x^2-x+\dfrac{1}{4})+ (y^2+6y+9) + \dfrac{3}{4}= (x-\dfrac{1}{2})^2 + (y+3)^2 + \dfrac{3}{4} $

LL tương tự phần a có Min B=$\dfrac{3}{4} \leftrightarrow x=\dfrac{1}{2}; y= -3 $

c, $C= (x-1)(x+5)(x^2+4x+5)= (x^2+4x -5)(x^2+4x+5)= (x^2+4x)^2-25$
Ta có Min C= -25 $\leftrightarrow x^2+4x = 0 \leftrightarrow x \in${0;-4}

d, Đặt x-3=t ta có:
$D=t^2+(t-8)^2 = 2t^2 + 64- 16t = 2(t^2+16-8t)+32= 2(t-4)^2+ 32$
Ta có Min D = 32 $\leftrightarrow 2(t-4)^2 = 0 \leftrightarrow t-4 = 0 \leftrightarrow t = 4 $
Hay $x-3=4 \to x=7$

Vậy Min D= 32 $\leftrightarrow x=7$
 
Top Bottom