[Toán 8]Giúp tớ 2 bài toán khó này nhớ

G

ga_cha_pon9x

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Câu 1,
a,C/m rằng [TEX]A=n^3+(n+1)^3 +(n+2)^3 \vdots 9[/TEX] với mọi n thuộc N*
b,Cho x,y,z>0.Tìm GTNN của bt sau:
[TEX]P=\frac{x}{y+z} +\frac{y}{z+x} +\frac{z}{x+y}[/TEX]
Câu 2,tìm các số nguyên dương x,y thoả mãn x[TEX]^2=y^2+2y+13[/TEX]

Chú ý latex,tiêu đề [Toán 8]+nội dung bài viết
 
Last edited by a moderator:
C

conangbuongbinh_97

Câu 1,
b,Cho x,y,z>0.Tìm GTNN của bt sau:
P=x/(y+z) +y/(z+x) +z/(x+y)
[TEX]3+P=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\\=(x+y+z)(\frac{1}{x+y}+\frac{1}{y+z}+\fra{1}{z+x})\\=3+(\frac xy+\frac ỹ)+(\frac xz+\frac zx)+(\frac yz+\frac zy)\geq3+2+2+2=9\\\Rightarrow P\geq6[/TEX]
Vậy Min P=6[TEX]\Leftrightarrow x=y=z[/TEX]
_________
Nhớ tks nha!
 
Last edited by a moderator:
B

billy9797

1/a/khai triển ra thấy cần c/m 3n(n^2+5) chia hết cho 9=>n(n^2+5) chia hết 3,giả sử n chia hết 3 dễ dàng c/m dc,chia 3 dư 1,2 thì đặt n=3x+1,2 rồi thế vào n^2+5
3/x^2=y^2+2y+13
<=>(x-y-1)(x+y+1)=12
thử 2 trường hợp(2 cặp số tự nhiên ước của 12):1,12;2,6 bỏ 3,4 vì x-y-1,x+y+1 chênh lệch quá 2
 
Last edited by a moderator:
L

linhhuyenvuong

[TEX]3+P=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\\=(x+y+z)(\frac{1}{x+y}+\frac{1}{y+z}+\fra{1}{z+x})\\=3+(\frac ab+\frac ba)+(\frac ac+\frac ca)+(\frac bc+\frac cb)\geq3+2+2+2=9\\\Rightarrow P\geq6[/TEX]
Vậy Min P=6[TEX]\Leftrightarrow x=y=z[/TEX]
[/B]
_______________________
****************************???
Sai rồi! ở đâu ra ẩn a,b,c vậy!
[tex]P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}[/tex]
\Rightarrow [tex] P+3=(\frac{x}{y+z}+1)+(\frac{y}{x+z}+1)+(\frac{z}{x+y}+1)[/tex]

[tex]=\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}[/tex]

[tex]=(x+y+z)(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z})[/tex]

[tex]=\frac{1}{2}[(x+y)+(y+z)+(x+z)](\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z})[/tex]
\Rightarrow [tex] P\geq 1,5[/tex]
 
N

nguyenkhanhchi

[TEX]3+P=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\\=(x+y+z)(\frac{1}{x+y}+\frac{1}{y+z}+\fra{1}{z+x})\\=3+(\frac ab+\frac ba)+(\frac ac+\frac ca)+(\frac bc+\frac cb)\geq3+2+2+2=9\\\Rightarrow P\geq6[/TEX]
Vậy Min P=6[TEX]\Leftrightarrow x=y=z[/TEX]
Bạn ơi nhầm rồi, min P chỉ là 3/2 thôi, bài này trong NCPT có rồi đó :D
[TEX]3+P=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\\=(x+y+z)(\frac{1}{x+y}+\frac{1}{y+z}+\fra{1}{z+x})[/TEX]
Đặt x+y=a, y+z=b, x+z=c
[TEX]\Leftrightarrow 3+P= \frac{1}{2}(a+b+c)(\frac{1}{a}+1/b+\frac{1}{c})=\frac{1}{2}(3+(\frac ab+\frac ba)+(\frac ac+\frac ca)+(\frac bc+\frac cb))\geq (3+2+2+2).1/2=4,5[/TEX]
\Rightarrow P\geq 4,5-3=1,5
Dấu ''='' xra khi a=b=c \Leftrightarrow x=y=z
 
Last edited by a moderator:
C

conangbuongbinh_97

_______________________
****************************???
Sai rồi! ở đâu ra ẩn a,b,c vậy!
[tex]P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}[/tex]
\Rightarrow [tex] P+3=(\frac{x}{y+z}+1)+(\frac{y}{x+z}+1)+(\frac{z}{x+y}+1)[/tex]

[tex]=\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}[/tex]

[tex]=(x+y+z)(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z})[/tex]

[tex]=\frac{1}{2}[(x+y)+(y+z)+(x+z)](\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z})[/tex]
\Rightarrow [tex] P\geq 1,5[/tex]
lộn!Nghĩ đến CT trong NCPT nên viết luôn!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 
N

nguyenkhanhchi

Câu 1,
a,C/m rằng [TEX]A=n^3+(n+1)^3 +(n+2)^3 \vdots 9[/TEX] với mọi n thuộc N*

Câu 2,tìm các số nguyên dương x,y thoả mãn [TEX]x^2=y^2+2y+13[/TEX]
a, Quy nạp :D
Thử với n=1 thì A chia hết cho 9
Gỉa sử bt đúng với n=k, tức là [TEX]k^{3}+(k+1)^{3}+(k+2)^{3} \vdots 9 [/TEX]
Cần CM: bt đúng với n=k+1 hay [TEX](k+1)^{3}+(k+2)^{3}+(k+3)^{3} \vdots 9[/TEX]
Khai triển bt trên ra và chú ý [TEX]k^{3}+(k+1)^{3}+(k+2)^{3} \vdots 9 [/TEX] (giả thiết quy nạp) thì sẽ CM đc bt đúng vs n=k+1 hay [TEX]A=n^3+(n+1)^3 +(n+2)^3 \vdots 9[/TEX] với mọi n thuộc N*
2,
[TEX]x^2=y^2+2y+13 [/TEX] \Leftrightarrow [TEX]x^{2}=(y+1)^{2}+12 \Leftrightarrow x^{2}-(y+1)^{2}=12\Leftrightarrow (x-y-1)(x+y+1)=12=1.12=3.4=2.6[/TEX]
Chỉ xét x,y nguyên dường thôi nên chỉ cần phân tích ra các thừa số ng. dương là đc
và chú ý x-y-1 < x+y+1 => Lập bảng xét gt :)
 
L

linhhuyenvuong

Câu 1,
a,C/m rằng [TEX]A=n^3+(n+1)^3 +(n+2)^3 \vdots 9[/TEX] với mọi n thuộc N*

Chú ý latex,tiêu đề [Toán 8]+nội dung bài viết

________________________________
Bài này có thể PTĐTTNT
[tex] A=n^3+(n+1)^3+(n+2)^3[/tex]
[tex]=3n^3+9n^2+15n+9n[/tex]
[tex]=3[(n^3+n^2)+(2n^2+2n)+(3n+3)][/tex]
[tex]=3[n(n+1)(n+2)+3(n+1)] \vdots 9[/TEX]
 
Last edited by a moderator:
T

thienlong_cuong

chém mịt mù vậy !
ta có
[TEX]P = \frac{x}{y +z} + \frac{y}{x +z} + \frac{z}{x +y}[/TEX]

[TEX]Q = \frac{y}{y +z} + \frac{z}{x +z} + \frac{x}{x +y}[/TEX]

[TEX]M = \frac{z}{y +z} + \frac{x}{x +z} + \frac{y}{x +y}[/TEX]

Ta có
[TEX]Q + M = 3[/TEX]

[TEX]P + Q + M \geq 4,5[/TEX]

[TEX]\Rightarrow P \geq 1,5[/TEX]
 
T

thienlong_cuong

[TEX]A = n^3 + (n +1)^3 + (n +2)^3[/TEX]
Áp dụng hằng đẳng thức
[TEX]a^3 + b^3 + c^3 - 3abc = (a +b+c)(a^2 +b^2 +c^2 - ab -bc - ac)[/TEX]

Dễ thấy
[TEX]3n(n +1)(n +2)[/TEX] chia hết 9 ____(1)

[TEX](n + n +1 +n +2)[n^2 +(n +1)^2 + (n +2)^2 - n(n +1) - (n +1)(n +2) - n(n +2)][/TEX]

[TEX]= -9(n +1)n [/TEX] luôn chia hết cho 9 ____(2)
Từ (1) và (2)
\Rightarrow A chia hết 9 (đpcm)
 
Top Bottom